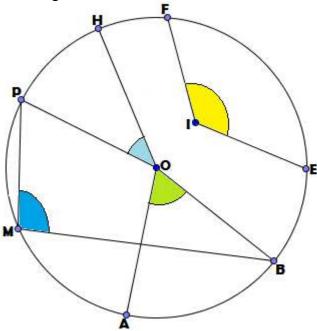
Chap 3 8 ANGLES INSCRITS

I. Présentation et définition

Exemple: On considère la figure ci-dessous:



Les angles \widehat{AOB} et \widehat{HOP} ont pour sommet, le point O centre du cercle : Ils sont appelés <u>angles au centre</u>.

L'angle \widehat{BMP} a pour sommet, le point M qui se situe sur le cercle. En plus de cela, ses côtés MB et MP sont des cordes de ce cercle.

Ces deux conditions réunies, définissent l'angle \widehat{BMP} comme un angle inscrit.

L'angle \widehat{FIE} a pour sommet, le point I qui se situe à l'intérieur du cercle et qui est distinct de O. L'angle \widehat{FIE} n'est alors, ni un angle au centre ni un angle inscrit car il ne respecte aucune des conditions établies ci-dessus.

A Retenir:

Soit (C), un cercle de centre O:

- ➤ Un angle au centre, est un angle dont le sommet est le point O, centre du cercle.
- ➤ Un angle inscrit est un angle dont le sommet appartient au cercle et dont les côtés sont susceptibles d'être des cordes de ce cercle.
- ➤ Un angle qui ne respecte pas les conditions ci-dessus n'est ni un angle au centre ni un angle inscrit.

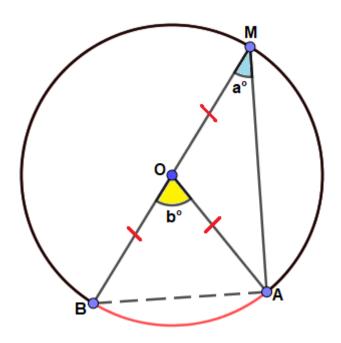
II. Relation entre angle inscrit et angle au centre associé

Exemple 1:

On considère le cercle suivant :

Dans cette figure, l'angle inscrit \widehat{AMB} et l'angle au centre \widehat{AOB} interceptent le même arc \widehat{AB} (le petit arc en rouge).

Montrons que $\widehat{AOB} = 2 \times \widehat{AMB}$



Le triangle AOM est isocèle en O, donc ses angles à la base \widehat{AMO} et \widehat{MAO} sont égaux $\widehat{AMO} = \widehat{MAO} = a^{\circ}$.

Dans le triangle AOM, la somme des angles est égale 180°, il vient :

$$\widehat{AMO} + \widehat{MAO} + \widehat{AOM} = 180^{\circ} \operatorname{donc} \widehat{AOM} = 180^{\circ} - \widehat{AMO} - \widehat{MAO} = 180^{\circ} - 2\alpha^{\circ}$$

$$\widehat{AOM} = 180^{\circ} - 2\widehat{AMO}.$$
 (2)

L'angle plat \widehat{MOB} est formé par les angles \widehat{AOM} et \widehat{AOB} , il vient : $\widehat{MOB} = \widehat{AOM} + \widehat{AOB} = 180^{\circ}$ ce qui entraine que $\widehat{AOB} = 180^{\circ} - \widehat{AOM}$.

En remplaçant: $\widehat{AOM} = 180^{\circ} - 2\widehat{AMO}$ dans $\widehat{AOB} = 180^{\circ} - \widehat{AOM}$, il vient: $\widehat{AOB} = 180^{\circ} - (180^{\circ} - 2\widehat{AMO}) = 180^{\circ} - 180^{\circ} + 2\widehat{AMO} = 2\widehat{AMO}$.

Comme \widehat{AMO} et \widehat{AMB} désignent le même angle donc $\widehat{AOB} = 2\widehat{AMB}$.

On obtient la relation $\widehat{AOB} = 2 \times \widehat{AMB}$

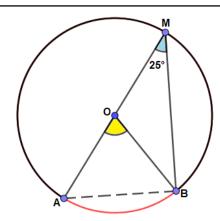
A retenir : Soit (C), un cercle de centre donné :

Dans (C), un angle au centre est égal à deux fois un angle inscrit interceptant le même arc que lui.

Exemple 2:

Dans le cercle ci-contre, $\widehat{AMB} = 25^{\circ}$

Calcule \widehat{AOB}

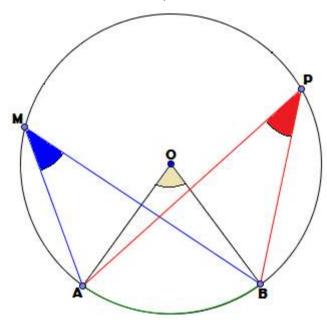


L'angle au centre AOB et l'angle inscrit AMB interceptent le même arc de cercle \widehat{AB} , il vient :

$$\widehat{AOB} = 2 \times \widehat{AMB} = 2 \times 25^{\circ} = 50^{\circ}$$

III. Angles inscrits interceptant le même arc

Exemple: On considère le cercle ci-dessous ;



Dans ce cercle, l'angle au centre \widehat{AOB} et l'angle inscrit \widehat{AMB} interceptent le même arc \widehat{AB} donc : $\widehat{AOB} = 2 \times \widehat{AMB}$

Dans ce même cercle, l'angle au centre \widehat{AOB} et l'angle inscrit \widehat{APB} interceptent le même arc \widehat{AB} , donc :

$$\widehat{AOB} = 2 \times \widehat{APB}$$

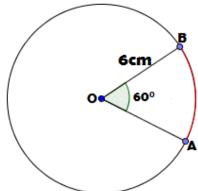
Par comparaison, on a : $2 \times \widehat{AMB} = 2 \times \widehat{APB}$ donc $\widehat{AMB} = \widehat{APB}$. On en déduit que les angles inscrits \widehat{AMB} et \widehat{APB} interceptant le même arc \widehat{AB} sont égaux.

Soit (C), un cercle de centre donné;

Dans (C), deux angles inscrits interceptant le même arc sont égaux.

IV. Longueur d'un arc de cercle :

L'angle au centre $\widehat{AOB} = 60^\circ$ intercepte l'arc AB. Pour calculer la longueur de cet arc, tu dois d'abord, convertir 60° en radian (rad).



$$180^{\circ} \rightarrow \pi \, rad$$

$$60^{\circ} \rightarrow 60 \times \frac{\pi}{180^{\circ}} = \frac{\pi}{3} rad$$

La longueur de l'arc AB est :

$$L_{AB} = Rayon \times \frac{\pi}{3} = 6 \times \frac{\pi}{3} = 2\pi \text{ cm}$$

V. <u>Cas où l'angle au centre intercepte le petit arc ÂB et l'angle inscrit le grand arc ÂB.</u>

Exemple:

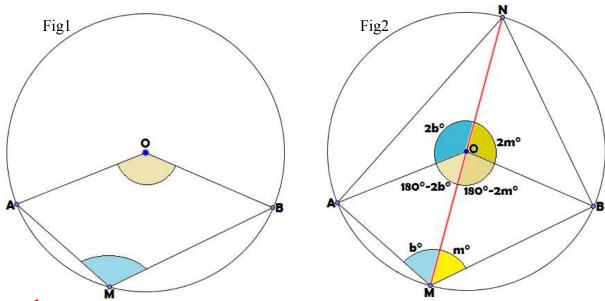


Figure 1:

L'angle au centre \widehat{AOB} intercepte le petit arc AB et l'angle inscrit \widehat{AMB} intercepte le grand arc AB. Quelle est la relation entre les deux ?

Pour répondre à cette question, on peut choisir un point N diamétralement opposé à M. (fig2)

Figure 2:

On pose : $\widehat{AMN} = b^{\circ}$ et $\widehat{BMN} = m^{\circ}$. Il vient, compte tenu de ce qui précède :

$$\widehat{AOM} = 180^{\circ} - 2b^{\circ}$$
 et $\widehat{BOM} = 180^{\circ} - 2m^{\circ}$

$$\widehat{AOB} = \widehat{AOM} + \widehat{BOM} = 180^{\circ} - 2b^{\circ} + 180^{\circ} - 2m^{\circ} = 360^{\circ} - 2(b^{\circ} + m^{\circ}) = 360^{\circ} - 2\widehat{AMB}$$

$$\widehat{AOB} = 360^{\circ} - 2\widehat{AMB}$$
 ou $\widehat{AMB} = \frac{1}{2}(360^{\circ} - \widehat{AOB}) = 180^{\circ} - \frac{1}{2}\widehat{AOB}$

Soit (C), un cercle de centre O; A et B deux points de (C):

Dans (C), l'angle au centre interceptant le petit arc \widehat{AB} et l'angle inscrit interceptant le grand arc \widehat{AB} sont liés par la relation :

$$\widehat{AOB} = 360^{\circ} - 2\widehat{AMB}$$
 ou $\widehat{AMB} = 180^{\circ} - \frac{1}{2}\widehat{AOB}$