Excellez avec les meilleurs professeurs!

| Matière : Mathématique   | <b>Série 3 : LIMITES</b> | <b>Professeur</b> : M. Maissa Fall |
|--------------------------|--------------------------|------------------------------------|
| Groupe Excellence (cours | CONTINUITE               | Niveau: 1S1                        |
| en ligne)                |                          |                                    |

### Exercice 1:

Calculer les limites en +  $\infty$  et en -  $\infty$  des fonctions suivantes.

a) 
$$f(x) = \frac{x^2 + 4x - 7}{2x^2 - 6}$$
 b)  $f(x) = \frac{2x - 7}{3x^2 - 3x + 1}$  c)  $\frac{x^2 + 2x + 3}{-3x + 4}$  d)  $f(x) = \frac{x^2 + 2}{|-2x + 3|}$ 

e) 
$$f(x) = x + \sqrt{x^2 - 2x}$$
 f)  $f(x) = \sqrt{x^2 + x + 1} - \sqrt{x^2 - 1}$  g)  $\frac{\sqrt{x^2 + 1} - 1}{x}$  h)  $f(x) = \frac{x - \sqrt{|x|}}{3x + 2}$ 

# Exercice 2:

Dans chacun des cas calculer la limite de la fonction f en 0.

a) 
$$f(x) = \frac{\sin 5x}{x}$$
 b)  $f(x) = \frac{\sin 5x}{\sin 3x}$  c)  $f(x) = \frac{\sin x}{\sqrt{x}}$  d)  $f(x) = \frac{\sin^3 x}{x^2}$  e)  $f(x) = \frac{x^3 \cos^3 x}{\sin^2 x}$ 

f) 
$$f(x) = \frac{\sin x + \tan x}{x}$$
 g)  $f(x) = \frac{x + \cos x}{x + \sin x}$ 

#### Exercice 3:

- **1.** Démontrer que  $\forall$   $x \in [1; +\infty[$ ,  $\frac{1}{2} \le \frac{x}{x+1} \le 1$ . En déduire  $\varinjlim_{+\infty} \frac{x\sqrt{x}}{x+1}$  et  $\varinjlim_{+\infty} \frac{x}{\sqrt{x}(x+1)}$
- 2. Démontrer que  $\forall$  x  $\in$  IR,  $|\cos x + \sin x| \le 2$ . En déduire les limites en  $+\infty$  et en  $-\infty$  de la fonction x  $\mapsto \frac{\cos x + \sin x}{x^2}$

#### Exercice 4:

1) Utiliser les propriétés de comparaison pour calculer les limites suivantes.



Excellez avec les meilleurs professeurs!

a) 
$$\varliminf_0 x \sin \frac{1}{x}$$
 b)  $\varliminf_0 x^2 \cos \frac{1}{x}$  c)  $\varliminf_{+\infty} \frac{\cos x}{x^2 + 1}$  d)  $\varliminf_{+\infty} \frac{1}{x + \sin x}$  e)  $\varliminf_{-\infty} \frac{x + \cos x}{3 + \cos x}$ 

f) 
$$f(x) = x + E(x)$$
 g)  $f(x) = 2x + \sin x$ 

f) 
$$f(x) = x + E(x)$$
 g)  $f(x) = 2x + \sin x$  h)  $f(x) = x^2(1 + \cos^2 x)$  i)  $f(x) = \frac{x - \sin^2 x}{2 + \sin x}$ 

j- 
$$f(x) = \frac{\sin(x^2)}{x^2}$$
 k-  $f(x) = \frac{E(x)}{x}$ 

2) Calculer les limites suivantes

$$\mathbf{a.} \lim_{x \to \frac{\pi}{4}} \frac{\tan 4x}{\sin 2x - 1}$$

**a.** 
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan 4x}{\sin 2x - 1}$$
 **b.** 
$$\lim_{x \to -\infty} \frac{2x + \cos x}{4 - 3\cos x}$$

2. Déterminer les domaines de définition de ces fonctions puis calculer les limites aux bornes:

**a.** 
$$f(x) = \frac{x^3 + x^2 + x - 3}{2x^2 - 3x + 1}$$
 **b.**  $g(x) = \sqrt{x^2 - 3x} - \sqrt{x^2 + 5x}$ 

**b.** 
$$g(x) = \sqrt{x^2 - 3x} - \sqrt{x^2 + 5x}$$

**3.** Calculer les limites suivantes

**a.** 
$$\lim_{x \to 3} \frac{2x - \sqrt{x+1} - 4}{x^2 - 2x - 3}$$
**b.**  $\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{\sqrt{2x+5} - 3}$ 

**b.** 
$$\lim_{x\to 2} \frac{\sqrt{x+2}-2}{\sqrt{2x+5}-3}$$

#### Exercice 5:

- 1. Démontrer que la limite en 0 de la fonction  $x \mapsto \frac{1-\cos x}{x^2} = \frac{1}{2}$
- 2. En déduire la limite en 0 des fonctions suivantes

a) 
$$x \mapsto \frac{x^3}{1-\cos x}$$

b) 
$$x \mapsto \frac{\sin^2 x}{\cos x - 1}$$

c) 
$$\mapsto \frac{\cos^2 x - 1}{x \tan x}$$

a) 
$$x \mapsto \frac{x^3}{1 - \cos x}$$
 b)  $x \mapsto \frac{\sin^2 x}{\cos x - 1}$  c)  $\mapsto \frac{\cos^2 x - 1}{x \tan x}$  d)  $\mapsto \frac{\sqrt{1 - \cos x}}{\sin x}$ 

#### Exercice 6:

Calculer la limite de f en x<sub>0</sub> dans chacun des cas suivants

a) 
$$f(x) = \frac{\sqrt{1+x}-1}{x}$$
  $x_0 = 0$  b)  $f(x) = \frac{\sqrt{\cos x}-1}{x}$   $x_0 = 0$  c)  $f(x) = \frac{\cos x}{1-\sin x}$   $x_0 = (\frac{\pi}{2})^{-1}$ 

d) 
$$f(x) = \frac{\sin x - \cos x}{2x - \frac{\pi}{2}}$$
  $x_0 = \frac{\pi}{4}$  e)  $f(x) = \frac{x - \sqrt{x^2 - 3x + 1}}{2x + \sqrt{4x^2 + x}}$   $x_0 = +\infty$  f)  $f(x) = \frac{\sqrt[3]{3x - 1} - 2}{x - 3}$   $x_0 = 3$ 

Excellez avec les meilleurs professeurs!

# Exercice 7:

Calculer les limites des fonctions suivantes aux points indiqués

1) 
$$f(x) = \frac{x^3 + x^2 - 8x - 12}{x^2 - 4x - 12}$$
;  $x_0 = -2$  et  $-\infty$ 

2) 
$$g(x) = \sqrt{x^2 + x + 1} - x - 1$$
;  $+\infty$ 

3) 
$$h(x) = \frac{\sqrt{2x} - 2}{\sqrt{x+1} - \sqrt{2x-1}}$$
  $x_0 = 2$ 

4) 
$$i(x) = \frac{\cos^2 x + \cos x - 2}{\cos^2 - 1}$$
  $x_0 = 0$ 

5) 
$$j(x) = \frac{\sqrt{1 - \cos 2x}}{\sin 3x}$$
  $x_0 = 0$ 

6) 
$$k(x) = \frac{\tan 6x}{1 - 2\sin x}$$
  $x_0 = \frac{\pi}{6}$ 

#### Exercice 8:

Déterminer les domaines de ces fonctions de IR vers IR et calculer les limites aux bornes

a) 
$$l(x) = \sqrt{x^2 - x} - \sqrt{x^2 - 1}$$
 e)g(x) = 
$$\begin{cases} \sqrt{x^2 + m^2} & \text{si } x < 0 \\ \frac{1 - m}{x + 2} & \text{si } x \ge 0 \end{cases}$$

b) 
$$m(x) = \frac{x - \sqrt{x^2 - x + 1}}{2x - \sqrt{2x^2 + 2}}$$

c) 
$$n(x) = \frac{x^2 + 3x - 4}{|x^2 - 1|}$$

d) 
$$f(x) = \frac{(x-a)(x-b)}{x(x-1)}$$
 on discutera suivant les valeurs de a et b

# Exercice 9:



Excellez avec les meilleurs professeurs!

Déterminer la limite en zéro de x  $\rightarrow \frac{(x+a)^{\frac{1}{3}}-a^{\frac{1}{3}}}{\frac{x}{x}}$  et la limite en +  $\infty$  de la fonction x  $\rightarrow$  x +  $\sqrt[3]{1-x^3}$ 

### **CONTINUITE**

### Exercice 1:

- 1. Etudier la continuité sur IR de la fonction  $x \mapsto E(x) + [x E(x)]^2$  ou E désigne la fonction partie entière.
- 2. Soit g la fonction définie par : g(x) = E(x) + E(2x)
- 3. Déterminer les limites à droite et à gauche de g aux points 0 et 0,5. La fonction est-elle continue en ces points ?

4.

#### Exercice 2:

Dans chacun des cas suivants déterminer la valeur de a pour que la fonction f soit continue sur IR. a)

$$\begin{cases} f(x) = \frac{x^2 - x}{x} & si \ x \neq 0 \\ f(0) = a \end{cases} \text{ b) } \begin{cases} f(x) = \frac{\sqrt{x^2 - x + 1} - x}{x - 1} \text{ si } x \neq 1 \\ f(1) = a \end{cases} \text{ c) } \begin{cases} f(x) = \frac{x + 1}{2x - 3}, & \text{si } x \leq 0 \\ f(x) = x^2 + x + a, \text{si } x \geq 0 \end{cases}$$

#### Exercice 3:

1. Soit f la fonction définie par :

$$\begin{cases} f(x) = \frac{x^2 - x - 6 + |x - 3|}{x^2 - 9} & \text{si } x \neq 3 \\ f(3) = a & \end{cases}$$

- a. Déterminer le domaine de définition de la fonction f.
- b. déterminer la limite a gauche et à droite en 3.
- c. Existent-ils des valeurs de a pour lesquelles f est continue en 3.
- 2. soit g la fonction définie par : g(x) =  $\frac{x^2 9}{|x| 3}$ ;

g est-elle prolongeable par continuité en -3 ?; en 3 ? si oui donner le prolongement.



Excellez avec les meilleurs professeurs!

# Exercice 4:

a) Étudier la continuité de f sur son domaine

$$\begin{cases} f(x) = \frac{x}{x-1} & \text{pour } x < 0 \\ f(x) = \sqrt{x-x^2} & \text{pour } 0 \le x < 1 \\ f(x) = -x^2 + 4x - 2 & \text{pour } 1 \le x < 3 \\ f(x) = 4 - x & \text{pour } x \ge 3 \end{cases}$$

b) Déterminer a et b pour que f soit continue sur son domaine

$$\begin{cases} f(x) = x^2 - ab & \text{pour } x < -2\\ f(x) = \frac{x^2 - a}{x - b} & \text{pour } -2 \le x < 1\\ f(x) = x - a & \text{pour } x \ge 1 \end{cases}$$

# Exercice 5:

Soit 
$$\begin{cases} f(x) = x^2 E\left(\frac{1}{x}\right) & si \quad x \neq 0 \\ f(0) = 0 & \end{cases}$$

- **a.** Donner l'expression de f sur  $]-\infty;-1]$  et sur  $]1;+\infty[$
- **b.** Déterminer  $\lim_{x \to +\infty} f(x)$  et  $\lim_{x \to -\infty} f(x)$ .
- **c.** Prouver que  $\forall x \in ]-1,0[ \cup ]0,1[$  on  $a \quad x-x^2 < f(x) \le x$
- d. Calculer la limite de f en 0.
- **e.** Pour  $n \in IN$ \* donner l'expression de f sur  $\left[\frac{1}{n+1}, \frac{1}{n}\right]$  et sur  $\left[\frac{1}{n}, \frac{1}{n-1}\right]$ .

f admet-elle une limite en  $\frac{1}{n}$  ?

### Exercice 6:

Soit f la fonction définie par  $f(x) = x \left(\frac{1}{x} - E\left(\frac{1}{x}\right)\right)$ 

- 1) Montrer que  $\forall x \in ]-1;1[,|f(x)| < |x|$
- 2) En déduire  $\lim_{x\to 0} f(x)$  et un prolongement par continuité de f en o



Excellez avec les meilleurs professeurs!

3) Donner l'expression de f pour  $x \in \left[\frac{1}{n+1}; \frac{1}{n}\right]$ ,  $n \ge 1$ . Calculer  $f\left(\frac{1}{n}\right)$ . En déduire la continuité de f sur ]0;1[

# Exercice 7:

Soit a un réel fixé. Soit  $\varphi$  une fonction numérique telle que si x tend vers a, alors  $(\varphi(x))^2$  tend vers 4. Intuitivement, on est tenté de dire que, si x tend vers a,  $\varphi(x)$  tend vers –2 ou  $\varphi(x)$  tend vers 2.

1°) Cette intuition est - elle vérifiée pour les fonctions f et g suivantes ?

$$f(x) = \frac{2|x|}{x}, \text{ et x tend vers 0} \quad \begin{cases} g(x) = -2 \sin x \in Q \\ g(x) = 2 \sin x \notin Q \end{cases} \text{ et x tend vers 3}$$

2°) Que doit – on ajouter à l'énoncé pour que l'intuition soit confirmée ?

### Exercice 8:

On définit les fonctions f et g par :

$$\begin{cases} f(x) = -x + \frac{1}{2} & \text{si } 0 \le x < \frac{1}{2} \\ f(x) = 0 & \text{si } \frac{1}{2} \le x \end{cases} \text{ et}$$
 
$$\begin{cases} g(x) = 0 & \text{si } 0 \le x < \frac{1}{2} \\ g(x) = x - \frac{1}{2} & \text{si } \frac{1}{2} \le x \le 1 \end{cases}$$

- 1) Les fonctions f;g;f+g, et fg sont-elles continues sur [0;1]?
- 2) Est-il vrai que le produit de 2 fonctions continues sur un intervalle [a ;b] est la fonction nulle si et seulement si l'une au moins des 2 fonctions est la fonction nulle ?

#### Exercice 9:

Déterminer le prolongement par continuité s'il existe des fonctions telles que :

$$f(x) = \frac{\sqrt{1+x}-1}{\sqrt{x}}; g(x) = \frac{\sqrt{4+x^2}-2}{3x} \sin(\frac{1}{x}); h(x) = \frac{1}{2x} [(1+x)^n - 1] (n \in IN) \text{ et } k(x) = xE(\frac{1}{x})$$

#### Exercice 10:

Soit f la fonction définie par  $\begin{cases} f(x) = \frac{|x| |x-2|}{x(x^2-x-2)} & \text{si } x \neq 2 \\ f(2) = \frac{1}{3} \end{cases}$ 

- 1- Étudier la continuité de f sur son ensemble de définition
- 2- Déterminer un prolongement par continuité à droite de 2
- 3- Déterminer les limites de f en -1; 1;  $-\infty$  et +  $\infty$



Excellez avec les meilleurs professeurs!

4-

### Exercice 11:

Étudier la continuité de f :

a) 
$$\begin{cases} f(x) = 1 - x & pour \ x < 1 \\ f(x) = x^2 + x - 2 & pour \ 1 \le x < 2 \\ f(x) = -4x - 2 & pour \ 2 \le x \end{cases}$$
 b) 
$$\begin{cases} f(x) = x \sin x - a \cos x & pour \ x < 0 \\ f(x) = x + b & pour \ 0 \le x < 3 \\ f(x) = x^2 - 4 & pour \ 3 \le x \end{cases}$$

(On discutera suivant les valeurs de a et b)

#### Exercice 12:

Soit f une fonction définie et continue sur [0;1] et telle que  $f([0;1] \subset [0;1]$ . Démontrer qu'il existe un réel  $x_0$  de [0;1] solution de l'équation f(x) = x.

#### Exercice 13:

On cherche toutes les fonctions f continues sur IR telles que pour tout couple (x, y) de réels on ait : f(x+y) = f(x) + f(y)

- 1) On suppose qu'une telle fonction existe
  - a) Calculer f(0); montrer que f est impaire
  - b) Montrer que pour tout entier relatif n on a : f(nx) = nf(x)
  - c) Montrer que pour tout rationnel r on a : f(rx) = rf(x)
  - d) Montrer que pour tout réel a on a : f( ax ) = af(x)
  - e) On pose  $f(1) = \alpha$ ; déterminer f(x) en fonction de x et  $\alpha$
- 2) Conclure

### Exercice 14:

Soit f une fonction f continue sur IR telle que pour tout réel x : f(2x) + f(x) = 0

- a) Calculer f(0)
- b) Montrer que pour tout entier naturel n :  $f(\frac{x}{2^n}) = (-1)^n f(x)$
- c) Montrer que f(x) = 0 pour tout réel

#### Exercice 15:

On cherche toutes les fonctions f définies et continues sur IR à valeurs dans IR $^*$ , telles que pour tout couple (x, y) de réels on ait : f(x+y) = f(x) f(y) (\*)

- 1-Montrer que f(0) = 1
- 2-Montrer que f(-x) =  $\frac{1}{f(x)}$  et f(x-y) =  $\frac{f(x)}{f(y)}$   $\forall x \in IR$ ,  $\forall y \in IR$

Pour vos cours en ligne : Contactez-nous aux 78.117.74.33 / 76.217.97.72

# Groupe Excellence



Excellez avec les meilleurs professeurs!

- 3-Montrer que pour tout entier naturel n on a :  $f(nx) = [f(x)]^n \ \forall x \in IR$
- 4-Montrer que pour tout entier relatif m on a :  $f(mx) = [f(x)]^m \forall x \in IR$
- 5-Montrer que pour tout rationnel r on a :  $f(rx) = [f(x)]^r \ \forall x \in IR$
- 6-Montrer que pour tout réel  $\alpha$  on a :  $f(\alpha x) = [f(x)]^{\alpha} \ \forall x \in IR$
- 7-On pose f(1) = k; exprimer f(x) en fonction de x et k pour tout x réel